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The purpose of this paper is to introduce an approximation of the kernel-based log-
optimal investment strategy that guarantees an almost optimal rate of growth of the

capital under minimal assumptions on the behavior of the market. The new strategy
uses much less knowledge on the distribution of the market process. It is analyzed both
theoretically and empirically. The theoretical results show that the asymptotic rate of
growth well approximates the optimal one that one could achieve with a full knowledge
of the statistical properties of the underlying process generating the market, under the
only assumption that the market is stationary and ergodic. The empirical results show
that the proposed semi-log-optimal and the log-optimal strategies have essentially the
same performance measured on past nyse data.

Keywords: Sequential investment; semi-log-optimal portfolios; kernel-based empirical
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1. Introduction

The purpose of this paper is to investigate sequential investment strategies for
financial markets. Investment strategies are allowed to use information collected
from the past of the market and determine, at the beginning of a trading period, a
portfolio, that is, a way to distribute their current capital among the available assets.
The goal of the investor is to maximize his wealth in the long run without knowing
the underlying distribution generating the stock prices. The only assumption we
use in our mathematical analysis is that the daily price relatives form a stationary
and ergodic process. Under this assumption the asymptotic rate of growth has a
well-defined maximum which can be achieved in full knowledge of the distribution
of the entire process, see Algoet and Cover [2].

Universally consistent procedures achieving the same asymptotic growth rate
without any previous knowledge have been known to exist, see Algoet [1], Györfi

505



April 17, 2007 16:39 WSPC-104-IJTAF SPI-J071 00425

506 L. Györfi, A. Urbán & I. Vajda

and Schäfer [8], Györfi et al., [7]. In this paper, new strategy, called semi-log-optimal
strategy, is proposed which guarantees an almost optimal asymptotic growth rate of
capital for all stationary and ergodic markets, and is of small computational com-
plexity. The procedure is an approximation of the kernel-based strategy introduced
by Györfi et al., [7] such that it uses only the first and second moments of the
market vector. We perform an experimental study in which we compare the perfor-
mance of the proposed method and the method in [7] for the data sets of New York
Stock Exchange (nyse) spanning a twenty-two-year period with thirty-six stocks
included.

The rest of the paper is organized as follows. In Sec. 2 the mathematical model
is described, and related results are surveyed briefly. In Sec. 4 the new kernel-
based nonparametric sequential investment strategy is introduced and its main
consistency properties are stated. Numerical results based on various data sets are
described in Sec. 5. The proof of the main theoretical result (Theorem 4.1) is given
in Sec. 6.

2. Setup, the Log-Optimal Strategy

The model of stock market investigated in this paper is the one considered, among
others, by Breiman [4], Algoet and Cover [2]. Consider a market of d assets. A market

vector x = (x(1), . . . , x(d))T ∈ R
d
+ is a vector of d nonnegative numbers representing

price relatives for a given trading period. That is, the jth component x(j) ≥ 0 of x
expresses the ratio of the closing and opening prices of asset j. In other words, x(j)

is the factor by which capital invested in the jth asset grows during the trading
period.

The investor is allowed to diversify his capital at the beginning of each trading
period according to a portfolio vector b = (b(1), . . . , b(d))T . The jth component b(j)

of b denotes the proportion of the investor’s capital invested in asset j. Throughout
the paper we assume that the portfolio vector b has nonnegative components with∑d

j=1 b(j) = 1. The fact that
∑d

j=1 b(j) = 1 means that the investment strategy
is self financing and consumption of capital is excluded. The non-negativity of the
components of b means that short selling and buying stocks on margin are not
permitted. Let S0 denote the investor’s initial capital. Then at the end of the trading
period the investor’s wealth becomes

S1 = S0

d∑
j=1

b(j)x(j) = S0 〈b , x〉 ,

where 〈· , ·〉 denotes inner product.
The evolution of the market in time is represented by a sequence of market

vectors x1,x2, . . . ∈ R
d
+, where the jth component x

(j)
i of xi denotes the amount

obtained after investing a unit capital in the jth asset on the ith trading period.
For j ≤ i we abbreviate by xi

j the array of market vectors (xj , . . . ,xi) and denote
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by ∆d the simplex of all vectors b ∈ R
d
+ with nonnegative components summing up

to one. An investment strategy is a sequence B of functions

bi :
(
R

d
+

)i−1 → ∆d , i = 1, 2, . . .

so that bi(xi−1
1 ) denotes the portfolio vector chosen by the investor on the ith

trading period, upon observing the past behavior of the market. We write b(xi−1
1 ) =

bi(xi−1
1 ) to ease the notation.

Starting with an initial wealth S0, after n trading periods, the investment strat-
egy B achieves the wealth

Sn = S0

n∏
i=1

〈
b(xi−1

1 ) , xi

〉
= S0e

Pn
i=1 log〈b(xi−1

1 ) , xi〉 = S0e
nWn(B),

where Wn(B) denotes the average growth rate

Wn(B) =
1
n

n∑
i=1

log
〈
b(xi−1

1 ) , xi

〉
.

Obviously, maximization of Sn = Sn(B) and maximization of Wn(B) are equivalent.
To make the analysis feasible, some simplifying assumptions are used that need

to be taken into account in the usual model of log-optimal portfolio theory. Assume

• the assets are arbitrarily divisible,
• the assets are available in unbounded quantities at the current price at any given

trading period,
• there are no transaction costs,
• the behavior of the market is not affected by the actions of the investor using the

strategy under investigation.

In this paper we assume that the market vectors are realizations of a random
process, and describe a statistical model. Our view is completely nonparametric
in that the only assumption we use is that the market is stationary and ergodic,
allowing arbitrarily complex distributions. More precisely, assume that x1,x2, . . .

are realizations of the random vectors X1,X2, . . . drawn from the vector-valued
stationary and ergodic process {Xn}∞−∞. The sequential investment problem, under
these conditions, have been considered by, e.g., Breiman [4] and Algoet and Cover
[2]. The fundamental limits, determined in [2], reveal that the so-called log-optimum

portfolio B∗ = {b∗(·)} is the best possible choice. More precisely, on trading period
n let b∗(·) be such that

b∗(Xn−1
1 ) = argmax

b(·)
E
{

log
〈
b(Xn−1

1 ) , Xn

〉∣∣Xn−1
1

}
.

If S∗
n = Sn(B∗) denotes the capital achieved by a log-optimum portfolio strategy

B∗, after n trading periods, then for any other investment strategy B with capital
Sn = Sn(B) and for any stationary and ergodic process {Xn}∞−∞,

lim sup
n→∞

1
n

log
Sn

S∗
n

≤ 0 almost surely
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and

lim
n→∞

1
n

log S∗
n = W ∗ almost surely,

where

W ∗ = E
{
log
〈
b∗(X−1

−∞) , X0

〉}
is the maximal possible growth rate of any investment strategy.

3. The Semi-Log-Optimal Strategy

Thus (almost surely), no investment strategy can have a faster rate of growth than
W ∗. Of course, to determine a log-optimal portfolio, full knowledge of the (infinite-
dimensional) distribution of the process is required. Strategies achieving the same
rate of growth without knowing the distribution are called universally consistent,
i.e., an investment strategy B is called universally consistent with respect to a class
of stationary and ergodic processes {Xn}∞−∞, if for each process in the class,

lim
n→∞

1
n

log Sn(B) = W ∗ almost surely.

In order to construct b∗, one has to know the conditional distribution of Xn

given Xn−1
1 . The classical Markowitz mean-variance approach to portfolio optimiza-

tion for single period investment selects portfolio b by performance E{〈b , Xn〉} and
risk Var{〈b , Xn〉} such that only the first and second moments of Xn are used in
the calculations (cf. Francis [6]). Similarly, if the process {Xn} is log-normally dis-
tributed, then again only the first and second moments are needed in the derivations
(cf. Schäfer [10]).

Next, for portfolio selection, we introduce a new principle, which supposes only
the knowledge of the conditional first and second moments, and has almost optimal
performance.

Put

h(z) = z − 1 − 1
2
(z − 1)2,

which is the second order Taylor expansion of the function log z at z = 1. Then,
the semi-log-optimal portfolio selection is defined by

b̄(Xn−1
1 ) = argmax

b(·)
E
{

h
(〈

b(Xn−1
1 ) , Xn

〉)∣∣Xn−1
1

}
.

For S̄n = Sn(B̄), Vajda [12] proved that under the condition (4.4)

lim inf
n→∞

1
n

log S̄n ≥ W ∗ − 5
6

E

{
max

m
|X(m) − 1|3

}
almost surely.

4. Kernel-Based Semi-Log-Optimal Strategy

The surprising fact is that there exists empirical strategies, universally consistent
with respect to the class of all stationary and ergodic processes with E| log X(j)|<∞
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for all j = 1, . . . , d (cf. Algoet [1] and Györfi and Schäfer [8]). Györfi et al., [7]
introduced kernel-based strategies; here we describe only the simplest “moving-
window” version, corresponding to a uniform kernel function.

Define an infinite array of experts H(k,�) = {h(k,�)(·)}, where k, � are positive
integers. For fixed positive integers k, �, choose the radius rk,� > 0 such that for any
fixed k,

lim
�→∞

rk,� = 0.

Then, for n > k + 1, define the expert h(k,�) as follows. Let Jn be the locations of
matches:

Jn =
{
k < i < n : ‖xi−1

i−k − xn−1
n−k‖ ≤ rk,�

}
,

where ‖ · ‖ denotes the Euclidean norm. Put

h(k,�)(xn−1
1 ) = arg max

b∈∆d

∏
{i∈Jn}

〈b , xi〉 , (4.1)

if the product is non-void, and b0 = (1/d, . . . , 1/d) otherwise.
These experts are mixed as follows: let {qk,�} be a probability distribution over

the set of all pairs (k, �) of positive integers such that for all k, �, qk,� > 0. If
Sn(H(k,�)) is the capital accumulated by the elementary strategy H(k,�) after n

periods when starting with an initial capital S0 = 1, then, after period n, the
investor’s capital becomes

Sn(B) =
∑
k,�

qk,�Sn(H(k,�)). (4.2)

Györfi et al., [7] proved that the kernel-based portfolio scheme B is universally
consistent with respect to the class of all ergodic processes such that E{| log X(j)|} <

∞, for j = 1, 2, . . . , d.
Next we introduce a modification of the previously defined strategy. Equa-

tion (4.1) can be formulated in an equivalent form:

h(k,�)(xn−1
1 ) = argmax

b∈∆d

∑
{i∈Jn}

log 〈b , xi〉 .

The semi-log-optimal kernel-based experts H̄(k,�) = {h̄(k,�)(·)} are as follows:

h̄(k,�)(xn−1
1 ) = argmax

b∈∆d

∑
{i∈Jn}

h(〈b , xi〉). (4.3)

The semi-log-optimal kernel-based strategy B̄ is the mixture (4.2) of the experts
{H̄(k,�)}.

In order to compute h(k,�)(xn−1
1 ), one has to make an optimization over b. In

each optimization step the computational complexity is proportional to the number
of matches (|Jn|). For h̄(k,�)(xn−1

1 ) this complexity can be reduced. We have that∑
{i∈Jn}

h(〈b , xi〉) =
∑

{i∈Jn}
(〈b , xi〉 − 1) − 1

2

∑
{i∈Jn}

(〈b , xi〉 − 1)2.
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If 1 denotes the all 1 vector, then∑
{i∈Jn}

h(〈b , xi〉) = 〈b , m〉 − 〈b , Cb〉,

where

m =
∑

{i∈Jn}
(xi − 1)

and

C =
1
2

∑
{i∈Jn}

(xi − 1)(xi − 1)T .

If we calculate the vector m and C beforehand then in each optimization step the
complexity does not depend on the number of matches, so the running time for
calculating h̄(k,�)(xn−1

1 ) is much smaller than that for h(k,�)(xn−1
1 ).

Theorem 4.1. Assume the market process is ergodic such that

0.6 ≤ X(j) and E{|X(j) − 1|3} < ∞, (4.4)

for j = 1, 2, . . . , d. Then, for S̄n = Sn(B̄),

lim inf
n→∞

1
n

log S̄n ≥ W ∗ − 5
6

E

{
max

m
|X(m) − 1|3

}
almost surely.

In the next section we have some experiments for NYSE data, where the bound
E{maxm |X(m) − 1|3} in the theorem is of order 10−6–10−4.

5. Empirical Results

In this section we present some numerical results obtained by applying the described
algorithms to some financial data consisting of the prices for 36 NYSE stocks along
22 years. The dataset we use is a standard set of NYSE data used by Cover [5],
Singer [11], Hembold et al., [9], and others. It includes daily prices of 36 assets along
a 22-year period (5651 trading days) ending in 1985.

All the proposed algorithms use an infinite array of experts. In practice we take
a finite array of size K × L. In all cases select K = 5 and L = 10. Choose the
uniform distribution {qk,�} = 1/(KL) over the experts in use, and the radius

r2
k,l = 0.0001 · d · k · �,

(k = 1, . . . , K and � = 1, . . . , L).
Table 1 summarizes the wealth achieved by several portfolio. In the second col-

umn we show the wealth achieved by the best stock of the two involved, by the
best constantly rebalanced portfolio (bcrp), by an oracle (defined as the best pos-
sible “anticipating” strategy which invests all the capital in the best stock each
day), and the results reported in the literature for Cover’s [5] universal portfolio
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Table 1. Wealth achieved by different strategies by investing in the pairs
of nyse stocks.

Stocks Best Exp. [k, �]

Iroquois best asset 8.92 B 2.6e+10 3.6e+11 [2,10]
Kin Ark bcrp 73.70 B̄ 2.6e+10 3.6e+11 [2,10]

oracle 6.85e+53
Cover up 39.97

Singer sap 143.7

Com. Met. best asset 52.02 B 1224 4765 [3,10]
Mei. Corp bcrp 103.0 B̄ 1219 4685 [3,10]

oracle 2.12e+35
Cover up 74.08

Singer sap 107.7

Com. Met. best asset 52.02 B 1.5e+11 1.9e+12 [2,8]
Kin Ark bcrp 144.0 B̄ 1.5e+11 1.9e+12 [2,8]

oracle 1.84e+49
Cover up 80.54

Singer sap 206.7

IBM best asset 13.36 B 52.3 182.4 [1,1]
Coca-Cola bcrp 15.02 B̄ 52.2 182.6 [1,1]

oracle 1.08e+15
Cover up 14.24

Singer sap 15.05

(up) and Singer’s [11] switching adaptive portfolio (sap). (Note that the “antici-
pating” portfolio brcp does not correspond to any valid investment strategy since
it can only be determined in hindsight.) The third column lists our results for the
kernel (B) and the semi-log-optimal version of the kernel (B̄) portfolios. The last
column lists the wealth and the index of the best expert among the KL competing
experts.

Table 2 summarizes the wealth achieved by each expert at the last period when
investing one unit in the Iroquois/Kin-Ark NYSE stock pair. Upper part is for the
kernel-based log-optimal portfolio B, while the lower part is for the kernel-based
semi-log-optimal portfolio B̄. Experts are indexed by k = 1, . . . , 5 in columns and
� = 1, . . . , 10 in rows.

From both tables we can conclude that the log-optimal and the semi-log-optimal
portfolios have the same performance.

6. Proofs

The proof of Theorem 4.1 uses the following three auxiliary results. The first is
known as Breiman’s generalized ergodic theorem [3].

Lemma 6.1. (Breiman [3]). Let Z = {Zi}∞−∞ be a stationary and ergodic process.
For each positive integer i, let T i denote the operator that shifts any sequence
{. . . , z−1, z0, z1, . . .} by i digits to the left. Let f1, f2, . . . be a sequence of real-valued
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Table 2. Wealth achieved for the Iroquois/Kin-Ark NYSE
stock pair.

� k

1 2 3 4 5

S5651(B) = 2.58e + 10
1 1.2e+8 6.8e+3 1.7e+3 1.4e+3 2.9e+2
2 4.1e+8 3.3e+6 7.3e+4 5e+3 5.2e+2
3 2.9e+9 9.7e+7 3e+6 8.2e+4 1.4e+3
4 5.6e+9 3.7e+9 4.7e+6 1.5e+6 1.2e+5
5 9.1e+9 2.1e+10 1.8e+7 4.5e+6 3.4e+4
6 8.3e+9 4.7e+10 1.2e+8 1.6e+7 1.9e+5
7 1.2e+10 3e+11 2.6e+8 1.2e+7 1e+6
8 2.4e+10 2e+11 8.5e+8 7e+8 3e+6
9 1.4e+10 2.1e+11 1.3e+10 1.1e+9 1.4e+7
10 2.7e+10 3.6e+11 3.9e+10 5.5e+8 5e+7

S5651(B̄) = 2.57e + 10
1 1.3e+8 7.2e+3 1.7e+3 1.4e+3 2.9e+2
2 4.5e+8 3.1e+6 7.2e+4 5.1e+3 5.2e+2
3 3e+9 9.9e+7 3.1e+6 8.4e+4 1.4e+3
4 5.6e+9 3.7e+9 4.8e+6 1.6e+6 1.2e+5
5 9.6e+9 2.2e+10 1.9e+7 4.5e+6 3.5e+4
6 8.8e+9 4.8e+10 1.3e+8 1.6e+7 2e+5
7 1.2e+10 2.9e+11 2.7e+8 1.2e+7 1e+6
8 2.5e+10 1.9e+11 8.8e+8 6.9e+8 2.9e+6
9 1.4e+10 2e+11 1.4e+10 1.1e+9 1.4e+7
10 2.7e+10 3.6e+11 3.8e+10 5.4e+8 5e+7

functions such that limn→∞ fn(Z) = f(Z) almost surely for some function f.

Assume that E supn |fn(Z)| < ∞. Then

lim
n→∞

1
n

n∑
i=1

fi(T iZ) = Ef(Z) almost surely.

The next two lemmas are the slight modifications of the results due to Algoet
and Cover [2], Theorems 3 and 4.

Lemma 6.2. Let Qn∈N∪{∞} be a family of regular probability distributions over
the set R

d
+ of all market vectors such that E{|U (j)

n |2} < ∞ for any coordinate
of a random market vector Un = (U (1)

n , . . . , U
(d)
n ) distributed according to Qn. In

addition, let B∗(Qn) be the set of all semi-log-optimal portfolios with respect to Qn,

that is, the set of all portfolios b that attain maxb∈∆d
E{h(〈b , Un〉)}. Consider an

arbitrary sequence bn ∈ B∗(Qn). If

Qn → Q∞ weakly as n → ∞
then, for Q∞—almost all u,

lim
n→∞ 〈bn , u〉 = 〈b∗ , u〉 ,

where the right-hand side is constant as b∗ ranges over B∗(Q∞).
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Lemma 6.3. Let X be a random market vector defined on a probability space
(Ω,F , P) satisfying E{|X(j)|2} < ∞. If Fk is an increasing sequence of sub-σ-fields
of F with

Fk ↗ F∞ ⊆ F ,

then

E

{
max

b
E [h(〈b , X〉)|Fk]

}
↗ E

{
max

b
E [h(〈b , X〉)|F∞]

}

as k → ∞ where the maximum on the left-hand side is taken over all Fk-
measurable functions b and the maximum on the right-hand side is taken over all
F∞-measurable functions b.

Proof of Theorem 4.1. The proof is an easy modification of Györfi et al., [7].
Without loss of generality we may assume S0 = 1, so

lim inf
n→∞ Wn(B̄) = lim inf

n→∞
1
n

log Sn(B̄)

= lim inf
n→∞

1
n

log


∑

k,�

qk,�Sn(H̄(k,�))




≥ lim inf
n→∞

1
n

log

(
sup
k,�

qk,�Sn(H̄(k,�))

)

= lim inf
n→∞

1
n

sup
k,�

(
log qk,� + log Sn(H̄(k,�))

)

= lim inf
n→∞ sup

k,�

(
Wn(H̄(k,�)) +

log qk,�

n

)

≥ sup
k,�

lim inf
n→∞

(
Wn(H̄(k,�)) +

log qk,�

n

)

= sup
k,�

lim inf
n→∞ Wn(H̄(k,�)). (6.1)

Because of the property of the Taylor expansion, we have that 0.6 ≤ z implies the
inequalities

h(z) − 1
2
|z − 1|3 ≤ log z ≤ h(z) +

1
3
|z − 1|3,

therefore

Wn(H̄(k,�)) =
1
n

n∑
i=1

log
〈
h̄(k,�)(Xi−1

1 ) , Xi

〉

≥ 1
n

n∑
i=1

h
(〈

h̄(k,�)(Xi−1
1 ) , Xi

〉)
− 1

2n

n∑
i=1

∣∣∣〈h̄(k,�)(Xi−1
1 ) , Xi

〉
− 1
∣∣∣3 .
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By Jensen’s inequality,

|〈b , Xi〉 − 1|3 =

∣∣∣∣∣
d∑

m=1

b(m)(X(m)
i − 1)

∣∣∣∣∣
3

≤
d∑

m=1

b(m)
∣∣∣X(m)

i − 1
∣∣∣3 ≤ max

m

∣∣∣X(m)
i − 1

∣∣∣3 ,

therefore

− 1
2n

n∑
i=1

∣∣∣〈h̄(k,�)(Xi−1
1 ) , Xi

〉
− 1
∣∣∣3 ≥ − 1

2n

n∑
i=1

max
m

∣∣∣X(m)
i − 1

∣∣∣3

→ −1
2

E

{
max

m

∣∣∣X(m)
0 − 1

∣∣∣3} .

Let the integers k, �, and the vector s = s−1
−k ∈ R

dk
+ be fixed. Let P

(k,�)
j,s denote

the (random) measure concentrated on {Xi : 1 − j + k ≤ i ≤ 0, ‖Xi−1
i−k − s‖ ≤ rk,�}

defined by

P
(k,�)
j,s (A) =

∑
i:1−j+k≤i≤0,‖Xi−1

i−k−s‖≤rk,�
IA(Xi)

|{i : 1 − j + k ≤ i ≤ 0, ‖Xi−1
i−k − s‖ ≤ rk,�}|

, A ⊂ R
d
+

where IA denotes the indicator function of the set A. If the above set of Xis is
empty, then let P

(k,�)
j,s = δ(1,...,1) be the probability measure concentrated on the

vector (1, . . . , 1). Györfi et al., [7] proved that for all s, with probability one,

P
(k,�)
j,s → P

∗(k,�)
s =

{
PX0|‖X−1

−k−s‖≤rk,�
if P(‖X−1

−k − s‖ ≤ rk,�) > 0,

δ(1,...,1) if P(‖X−1
−k − s‖ ≤ rk,�) = 0

(6.2)

weakly as j → ∞ where PX0|‖X−1
−k−s‖≤rk,�

denotes the distribution of the vector X0

conditioned on the event ‖X−1
−k − s‖ ≤ rk,�.

By definition, b̄(k,�)(X−1
1−j , s) is a semi-log-optimal portfolio with respect to the

probability measure P
(k,�)
j,s . Let b̄∗

k,�(s) denote a semi-log-optimal portfolio with

respect to the limit distribution P
∗(k,�)
s . Then, using Lemma 6.2, we infer from (6.2)

that, as j tends to infinity, we have the almost sure convergence

lim
j→∞

〈
b̄(k,�)(X−1

1−j , s) , x0

〉
=
〈
b̄∗

k,�(s) , x0

〉
for P

∗(k,�)
s —almost all x0 and hence for PX0—almost all x0. Since s was arbitrary,

we obtain

lim
j→∞

〈
b̄(k,�)(X−1

1−j ,X
−1
−k) , x0

〉
=
〈
b̄∗

k,�(X
−1
−k) , x0

〉
almost surely. (6.3)

Next we apply Lemma 6.1 for the function

fi(x∞
−∞) = h

(〈
h̄(k,�)(x−1

1−i) , x0

〉)
= h

(〈
b̄(k,�)(x−1

1−i,x
−1
−k) , x0

〉)
defined on x∞

−∞ = (. . . ,x−1,x0,x1, . . .). Put

h̃(z) = |z − 1| + 1
2
(z − 1)2,



April 17, 2007 16:39 WSPC-104-IJTAF SPI-J071 00425

Kernel-Based Semi-Log-Optimal Empirical Portfolio Selection Strategies 515

then for each b, the Jensen inequality implies that

|h (〈b , X0〉)| ≤ h̃ (〈b , X0〉) ≤
d∑

m=1

b(m)h̃(X(m)
0 ) ≤

d∑
m=1

h̃(X(m)
0 ),

therefore

∣∣fi(X∞
−∞)

∣∣ =
∣∣∣h(〈h̄(k,�)(X−1

1−i) , X0

〉)∣∣∣ ≤ d∑
m=1

h̃(X(m)
0 ) ,

which has finite expectation, and

fi(X∞
−∞) → h

(〈
b̄∗

k,�(X
−1
−k) , X0

〉)
almost surely as i → ∞

by (6.3). As n → ∞, Lemma 6.1 yields

1
n

n∑
i=1

fi(T iX∞
−∞) =

1
n

n∑
i=1

h
(〈

h̄(k,�)(Xi−1
1 ) , Xi

〉)

→ E
{
h
(〈

b̄∗
k,�(X

−1
−k) , X0

〉)}
def= ε̄k,� almost surely.

Let b∗
k,�(s) denote a log-optimal portfolio with respect to the limit distribution

P
∗(k,�)
s . Then

ε̄k,� = E
{
h
(〈

b̄∗
k,�(X

−1
−k) , X0

〉)}
≥ E

{
h
(〈

b∗
k,�(X

−1
−k) , X0

〉)}
≥ E

{
log
〈
b∗

k,�(X
−1
−k) , X0

〉}− 1
3

E

{
max

m

∣∣∣X(m)
0 − 1

∣∣∣3}

def= εk,� − 1
3

E

{
max

m

∣∣∣X(m)
0 − 1

∣∣∣3} .

Györfi et al., [7] proved that

sup
k,�

εk,� = W ∗,

therefore, by (6.1) we have

lim inf
n→∞ Wn(B̄) ≥ sup

k,�
ε̄k,� − 1

2
E

{
max

m

∣∣∣X(m)
0 − 1

∣∣∣3}

≥ sup
k,�

εk,� − 5
6

E

{
max

m

∣∣∣X(m)
0 − 1

∣∣∣3}

= W ∗ − 5
6

E

{
max

m

∣∣∣X(m)
0 − 1

∣∣∣3} almost surely,

and the proof of the theorem is completed.
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