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Single-User Tracing and Disjointly Superimposed Codes

Miklós Csűrös and Miklós Ruszinkó

Abstract—The zero-error capacity region of -out-of- user mul-
tiple-access OR channel is investigated. A family of subsets of
[ ] = 1 . . . is an -single-user-tracing superimposed code
( -SUT) if there exists such a single-user-tracing function : 2
that for all with 1 , ( ) . In this
correspondence, we introduce the concept of these codes and give bounds
on their rate. We also consider disjointly -superimposed codes.

Index Terms—Codes, group testing, physical mapping, superimposed
codes.

I. INTRODUCTION

Suppose that T users share a common channel. A binary vector of
length n is associated to each user. The ith user transmits its vector
xxxi = (x1i ; x

2

i ; . . . ; x
n
i ) (i = 1; 2; . . . ; T ) if it is active, otherwise it
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does not. It is assumed that the transmission is bit and block synchro-
nized. The destination of the messages is a single receiver that observes
the bitwise OR vector of the vectors

yyy =
8i active

xxxi

associated to the active users. Moreover, suppose that at most r users
are active simultaneously. In the classical framework of superimposed
coding, the receiver has to be able to identify the set of all active users
from the output vector yyy of the channel. That is, the code must satisfy
the property that for all choices of xxx1; . . . ; xxxk and zzz1; . . . ; zzz` of code-
words with 1 � k; ` � r and fxxx1; . . . ; xxxkg 6= fzzz1; . . . ; zzz`g, we have

k

i=1

xxxi 6=

`

j=1

zzzj :

Although the rate of these codes have been studied extensively in, e.g.,
[1]–[6], it remains to be determined: the gap between the known upper
and lower bounds is still substantially large.

Here we investigate the case when the receiver has to be able to
identify just one user out of at most r active ones. Clearly, if a code
is superimposed in the classical sense then it satisfies this requirement:
being able to identify all active users, the receiver can always name just
one. A practical motivation for studying r-single-user-tracing (r-SUT)
families rises from applications of combinatorial designs in genomics,
reviewed in Section II. Section III discusses our results on the rate of
SUT superimposed codes. Section IV introduces the class of disjointly
superimposed codes, and analyzes their extremal properties. Section V
concludes the correspondence with some open questions.

II. SUPERIMPOSED CODES FOR THE PHYSICAL MAPPING OF

GENOMIC CLONES

A recently emerging application of superimposed codes, and group
testing methods in general, is for the analysis of genomic data. Ex-
amples include the quality-control of DNA chips [7], and diverse ap-
plications related to genome sequencing: closing the remaining gaps
at the end of a sequencing project [8], and clone library screening
[9], which we consider here in more detail. The sequencing of large
genomes (such as human) rely on genomic clones. We describe here
briefly the relevant procedures, somewhat simplifying the problem. A
recent overview of large genome sequencing techniques is given by
Green [10]. The genome of an organism can be described by a sequence
over a four-letter alphabet, corresponding to the four nucleotides used
in DNA. Mammalian genome sizes are in the order of billions. For
our purposes, a genomic clone is a random contiguous fragment of
the genome. (Fragments are inserted into a host cell, which multi-
plies and thus creates many identical copies of the original cell con-
taining the same piece of inserted foreign DNA fragment, hence the
term “clone.”) Typical clone fragment sizes are 100–200 thousand nu-
cleotides. A clone library is a collection of genomic clones, produced
using a large number of random fragments from many genome copies.
The fragments correspond essentially to a uniform sampling of the
whole genome. The information on which part of the genome the frag-
ments originate from is lost in the course of random sampling, and
needs to be determined using additional techniques. In a preliminary
step to complete genome sequencing, called physical mapping, this
information is established, by exploring overlaps between clone frag-
ments. Using the physical map, a smaller set of minimally overlapping
clones is selected in order to sequence the clones one-by-one. For in-
stance, while sequencing the human genome, more than 300 thousand
genomic clones were analyzed and about 30 thousand were selected
for complete sequencing [11].

0018-9448/$20.00 © 2005 IEEE
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Fig. 1. Clone library screening. A clone library is a collection of random
fragments from a genome. Clones in a library are tested for the presence of a
sequence feature, such as homology to a given region in a related genome. The
tests are carried out by pooling the clones: if the clone subset comprising the
pool contains the feature, the test is positive, otherwise it is not.

The main issue in constructing a physical map is the discovery of
overlaps. The key technique is to test sequence features, which are nec-
essarily shared by overlapping clones. Often, a group-testing approach
is employed by pooling the DNA from different clones: a pool is de-
fined by a subset of clones that are screened together in a single ex-
perimental step. Fig. 1 illustrates the concept of clone pooling. In the
terminology of superimposed codes, clones correspond to users and
pools correspond to the coordinates of the user vectors: the ith clone
is included in pool j if the jth bit of user vector xxxi equals one. Ac-
tive users correspond to clones containing a particular feature. When
testing a feature, pools are tested individually, and exactly those pools
that contain a clone with the given feature test positive. The set (or at
least one) of the clones containing the feature has to be determined
from the set of positive pools, in the same way as the set of active users
needs to be determined from the bitwise OR of their vectors.

Historically, the most widely used features are short (up to the order
of hundreds of letters) contiguous sequences that occur once in the
genome, called sequence tagged sites (STS). All DNA in a pool can
be tested for the presence of a given STS, by hybridization for ex-
ample. Pooling designs for the purposes of STS screening have been
studied extensively [9], [12], [13], and this particular application in-
spired many recent theoretical results on superimposed codes and non-
adaptive group testing procedures [14]–[17].

A more recent application uses shotgun sequences [18], [19] for
testing sequence features in pooled clones. Pooled genomic indexing
(PGI) [19]maps genomic clones to a reference genome sequence. Thus,
the type of sequence feature that is tested by PGI is similarity to a re-
gion in the reference genome. In contrast to STS screening, the features
are not defined before the experiment but are found in the analysis of
the outcome. In a current application, (unsequenced) rhesus macaque
clones are beingmapped to the human genome. The raw outcome of the
experiment is a list of mappings between sets of pools and regions in
the reference sequence. Eachmapping is indicative of the fact that some
clones are similar to the same region in the reference sequence. The set
of pools containing those clones is observed by the experimenter, along
with the reference region.

The results of STS screening or a PGI experiment can be used to
select clones for complete sequencing. If the purpose of the experiment
is to identify clones that are particularly interesting and to sequence
them completely, a single-user tracing code is more adequate for the
pooling design than a “fully” superimposed code. In PGI, for instance,
a number of overlapping macaque clones may include the same region
that is homologous to a particular human gene: the experimenter will
want to identify at least one of those clones for complete sequencing,
but there is no need to identify all of them as they convey the same
information about the genome.

The bound r on the number of “active users,” i.e., the number of
clones exhibiting a given feature is determined by the number of clones
T . The size of a clone library is characterized by the coverage, which
equals c = TL=GwhereL is the average length of a clone, andG is the
total genome length. Various aspects of clone overlaps can be studied
by modeling the clone positions as arrival times in a Poisson process.
For example, the number of clones that include a given position in the
genome is a Poisson random variable with expected value c [20]. Clone
library coverage values are typically below 10, and are rarely above 20.
If unique sequence features are used, then every feature is shared by,
say, at most r = d2ce clones with high probability.

III. SINGLE-USER TRACING SUPERIMPOSED CODES

As the question is rather of a combinatorial nature, we introduce a
set terminology. Accordingly, codewords are characteristic vectors of
subsets of a set [n] = f1; . . . ; ng where n > 0, i.e., the subset A
corresponds to the binary vector xxx = (x1; . . . ; xn) with xi = 1 if and
only if i 2 A, and vice versa.

Throughout the correspondence, we use the de Finetti notation for
indicator functions, i.e., f� � �g denotes an event, or its indicator func-
tion, depending on the context. We write f(m) = o(g(m)) if the se-
quence f(m)=g(m)! 0 asm!1. When the base of the logarithm
matters, we use lg to denote binary logarithm.

Definition 3.1: A family F � 2[n] is r-superimposed if

k

i=1

Ai 6=
`

j=1

Bj

for any

fA1; A2; . . . ; Akg 6= fB1; B2; . . . ; B`g

1 � k; ` � r; A1; A2; . . . ; Ak; B1; B2; . . . ; B` 2 F .

We are interested in r-SUT families, defined as follows.

Definition 3.2: A family F is r-SUT if for all choices of
F1; . . . ;Fk � F with 1 � jFij � r

A2F

A =
A2F

A = � � � =
A2F

A

implies \ki=1Fi 6= ;. Equivalently, there exists such an SUT function
�: 2[n] 7!F that for all F 0�F with 1�jF 0j�r, �([A2F A)2F 0.

The following (folklore) lemma shows that it is enough to consider
k � r + 1 in Definition 3.2.

Lemma 3.3: Let k � r + 1. Let S1; . . . ; Sk be a collection of sets,
each containing at most r elements. If for all choices of 1 � i1 <
� � � < ir+1 � k, \r+1

j=1Si 6= ;, then \ki=1Si 6= ;.
Proof: For the sake of contradiction, suppose that \ki=1Si = ;.

For all a 2 S1, select i(a) such that a 62 Si(a). Then the intersection
of the at most (r + 1) sets S1 and Si(a) is empty.
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For every base set size n and r, let f(n; r) denote the maximum size
of an r-superimposed family, and g(n; r) denote the maximum size of
an r-SUT family. In what follows, we give bounds on the rate of r-SUT
families, which is

Rg(r) = lim sup
n!1

lg g(n; r)

n
:

Theorem 3.4: There exist constants c1; c2 > 0 such that
c1
r2
� Rg(r) �

c2
r
: (1)

Proof of the Lower Bound: Clearly, if F is r-superimposed then
it is r-SUT. Therefore,

g(n; r) � f(n; r) � 2c n=r

where the latter inequality can be found, say, in [3]. This gives the lower
bound in (1). }

In order to prove the upper bound, we relate r-SUT to another prop-
erty investigated in [21], [22].

Definition 3.5: (Alon, Fachini, Körner, [21]) A family F is r-lo-
cally thin if for all subsets F 0 � F with jF 0j = r, there exists x 2 [n]
such that

A2F

fx 2 Ag = 1

i.e., there exists an element x that appears in exactly onemember ofF 0.

We need the following strengthening of this definition.

Definition 3.6: A family F is � r-locally thin if for all subsets
F 0 � F with 1 � jF 0j � r, there exists such x 2 [n] that

A2F

fx 2 Ag = 1:

Lemma 3.7: If F is r-SUT then it is � (r + 1)-locally thin.
Proof: Contrary to the lemma, assume that there is a subset

F 0 = fA1; . . . ; Akg, 1 � k � r + 1 for which k
i=1fx 2 Aig 6= 1

holds for all x 2 [n]. For i = 1; . . . ; k, let Fi = F 0 � fAig. Since
every element is covered at least twice by the members of F 0

A2F

A =
A2F

A = � � � =
A2F

A; while

k

j=1

Fj = ;:

The existence of F1; . . . ;Fk contradicts the r-SUT property.

Let h0(n; r), h�(n; r) be the maximum size of r-locally thin, � r-
locally thin families, respectively.

Corollary 3.8:

g(n; r) � h�(n; r + 1) � h0(n; r + 1): (2)

Proof: Here the first inequality comes from Lemma 3.7, while
the second one follows directly from the definitions.

Alon, Fachini, and Körner [21] proved the following theorem.

Theorem 3.9:

Rh (r) <
2

r
; for r even

Rh (r) <
c log r

r
; for r odd; c is constant: (3)

Proof of the Upper Bound in Theorem 3.4: If r is odd, then (r+1)
is even. Hence, by (2) and (3)

Rg(r) � Rh (r + 1) � Rh (r + 1) <
2

r + 1
:

If r is even, then by the monotonicity of h�(n; r), (2), and (3)

Rg(r) � Rh (r + 1) � Rh (r) � Rh (r) <
2

r
:

In either case, the upper bound holds in (1) with c2 = 2.

The following Lemma 3.10 allows for an alternative, self-contained
proof of our upper bound on Rg , without using the (strong) bounds of
Theorem 3.9. It gives a sufficient upper bound for h�(n; r) when r is
even, which can then be employed with the monotonicity argument.

Lemma 3.10: Let r be even. If F is � r-locally thin, then the
modulo two sums of (r=2)-sets of characteristic vectors associated
with members of F are all different.

Proof: For the sake of contradiction, assume that there are two
collections F1 and F2 with the same modulo two sums. Consider the
symmetric difference F 0 = F1 4 F2. Clearly, it contains at most r
sets, and every element in [A2F A is covered at least twice (in fact,
even times) by members of F 0.

Corollary 3.11: If r is even, then Rh (r) � 2
r
.

Proof: By Lemma 3.10, h (n;r)
r=2

� 2n.

IV. DISJOINTLY r-SUPERIMPOSED CODES

Another important case implicated in the multiple-access model of
Section I is when the receiver must distinguish only between disjoint
sets of active users. The following definition captures this notion.

Definition 4.1: A family F � 2[n] is disjointly r-superimposed if

k

i=1

Ai 6=
`

j=1

Bj (4)

is implied by

fA1; A2; . . . ; Akg \ fB1; B2; . . . ; B`g = ;

for all 1 � k; ` � r; A1; A2; . . . ; Ak; B1; B2; . . . ; B` 2 F .

Despite the seemingly slight difference between Definitions 4.1
and 3.1, the extremal properties of disjointly r-superimposed families
and r-superimposed ones are completely different.

Let h(n; r) be the maximum size of disjointly r-superimposed fam-
ilies.

Lemma 4.2: IfF is r-superimposed then it is r-SUT. IfF is r-SUT,
then it is disjointly r-superimposed. Hence,

f(n; r) � g(n; r) � h(n; r):

Proof: The first part is already proved. The second part follows
from the fact that ifF is not disjointly r-superimposed, then there exist

A = fA1; . . . ; Akg � F and B = fB1; . . . ; B`g � F

such that [k
i=1Ai = [`

j=1Bj while A \ B = ;.

While we do not know if there is an exponential gap between
r-superimposed and r-SUT families, the following theorem shows
that there is such a gap between r-superimposed and disjointly r-su-
perimposed ones.

Theorem 4.3: The rate of disjointly r-superimposed codes is
bounded as

1

2r
� Rh(r) �

1

2
+ o(1)

lg r

r
: (5)

The key to the upper bound is the following observation.
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Lemma 4.4: IfF is disjointly r-superimposed then the vector sums
of r-size sets of characteristic vectors associated with members of F
are all different.

Proof: For the sake of contradiction, assume that there are two
collections F1;F2 2 F

r
, with the same vector sums. Consider F 01 =

F1 n F2 and F 02 = F2 n F1. Clearly, jF 01j; jF 02j � r, and the vector
sums of members of F 01 and F 02 are the same. But then

[A2F A = [B2F B

while F 01 and F 02 are disjoint, which is a contradiction.

Now, in a vector sum yyy = (y1; . . . ; yn) of r binary vectors, 0 �
yi � r holds in every coordinate i. The number of possible vector
sums is thus (r + 1)n, and therefore,

h(n; r)

r
� (r + 1)n

must hold. This gives an upper bound with a constant factor of 1 in
(5). In order to obtain the factor of 1

2
, we use a second-moment method

combined with a volume argument: we show that coordinates of almost
all vectors in F deviate within

p
r around the mean (instead of r=2, as

above). In fact, we show that if a family F of subsets of [n] has the
property that for every choice of r sets, the sum of the corresponding
characteristic vectors gives a different value, then the upper bound in
(5) already holds. We prove Theorem 4.3 after Lemma 4.5 below.

For a setA � f0; 1gn of binary vectors of length n, sss(A) stands for
the sum of its elements

sss(A) =
xxx2A

xxx:

Lemma 4.5: Let F be a set of binary vectors of length n, and let
T = jFj. Let ccc = T�1

vvv2F vvv be the average vector of the set. For
every integer 1 � r � T , the inequality

A2( )

sss(A)� rccc
2

� nr
T

r

holds, where k � k is the Euclidean norm.
Proof: By definition of the norm

A2( )

sss(A)� rccc
2

=

A2( )

ksss(A)k2 +
( )

r2kccck2 �
A2( )

2rcccsss(A): (6)

Clearly, the second term in (6) gives T

r
r2kccck2. The third term is

A2( )

2rcccsss(A) = 2rccc
T � 1

r � 1
vvv2F

vvv = 2
T

r
r2kccck2

since in the sum
A2( ) sss(A) every vector vvv 2 F appears with mul-

tiplicity T�1
r�1

, which is the number of distinct r-sets in which a given
vector vvv is contained. The first term of (6) can be bounded as follows:

A2( )

ksss(A)k2=
A2( ) vvv2A

vvv
2

�
A2( )

nr+2
1�i<j�r
vvv ;vvv 2A

vvvivvvj

=nr
T

r
+2

T�2

r�2
1�i<j�T
vvv ;vvv 2F

vvvivvvj

=nr
T

r
+2

T�2

r�2
1�i<j�T
vvv ;vvv 2F

vvvivvvj

+
T�2

r�2
vvv2F

kvvvk2� T�2

r�2
vvv2F

kvvvk2

=nr
T

r
+

T�2

r� 2
vvv2F

vvv
2

� T�2

r�2
vvv2F

kvvvk2

=nr
T

r
+

T�2

r�2
T 2kccck2� T�2

r�2
vvv2F

kvvvk2:

For the inequality, we used that the norm square of every vector is at
most n, as every vector is binary. Subsequently, we used that every pair
of vectors appears together in exactly T�2

r�2
sets of size r, and thus,

every product vvvivvvj occurs that many times.
Returning to (6), by the above computation we get

A2( )

sss(A)� rccc
2

�nr
T

r
+

T � 2

r � 2
T 2kccck2 � T � 2

r � 2
vvv2F

kvvvk2

� T

r
r2kccck2

=nr
T

r
+

T � 2

r � 2
T 2kccck2 � T � 2

r � 2
vvv2F

kvvvk2

� T � 2

r � 2
r2

T (T � 1)

r(r � 1)
kccck2:

From r � T follows that

�r2 T (T � 1)

r(r � 1)
� �T 2:

Therefore,

A2( )

sss(A)� rccc
2

� nr
T

r
� T � 2

r � 2
vvv2F

kvvvk2

+
T � 2

r � 2
T 2kccck2 � T � 2

r � 2
T 2kccck2

which implies to the desired result.

Proof of Theorem 4.3: First we prove the upper bound. Take an
arbitrary set F � f0; 1gn of binary vectors of length n, such that the
vector sums are different for all choices of r vectors. (By Lemma 4.4,
the set of characteristic vectors for a disjointly r-superimposed family
fulfills this condition.) Let T = jFj. As in Lemma 4.5, define the
average vector ccc = T�1

vvv2F vvv. Let A � F be a random subset of
size r, chosen with uniform probability. Consider the random variable
� = ksss(A) � rccck, the distance of sss(A) from its mean. By Lemma
4.5 and Jensen’s inequality [23], the expected distance � � p

nr. By
Markov’s inequality [23]

f� � ��1
p
nr)g � �

for all 0 < � < 1. This means that for any constant 0 < � < 1, at
least the (1� �) fraction of all sums for r-size subsets of F lie within
the n-dimensional ball B of radius ��1

p
nr centered at the point rccc.

Therefore, the number of integer lattice points in B is an upper bound
for (1��) T

r
. Consider a larger ballB0 with radius (

p
nr=�+

p
n=2)

centered at rccc. Its volume bounds the number of lattice points in B
from above. To see this, draw an n-dimensional unit cube centered at
each lattice point inB. All the cubes are withinB0, and to each integer
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lattice point a unit volume is associated. Using the well-known formula
for the volume of an n-dimensional ball (e.g., [24])

(1� �)
T

r
�

�n=2 ��1
p
nr + 1

2

p
n

n

�(1 + n=2)

where �(x) is the complete gamma function. An application of Stir-
ling’s approximation [23] to bound �(1 + n=2) leads to

lg T

n
� lg r

2r
+�

1

r
+

o(n)

n

which is tantamount to the upper bound of (5).
We prove the lower bound in (5) with a probabilistic argument. (This

proof was also observed by László Györfi.)
Let F be a randomly constructed family of size T , where T will

be specified later. Every set Ai 2 F is constructed randomly so that
x 2 Ai with probability (1�2�1=r) for all x independently. We prove
that F is disjointly r-superimposed with nonzero probability for some
T = 2�(n=r). Let A;B � F be two disjoint sets:A = fA1; . . . ; Akg
and B = fB1; . . . ; B`g, where A \ B = ; and 1 � k; ` � r. Define
A = [ki=1Ai and B = [`j=1Bj . Equation (4) is violated if for all
x 2 [n], either x 2 A \ B or x 62 A [ B. Since all Ai and Bj are
independent

p(k; `) =
x2[n]

fx 62 A; x 62 Bg [ fx 2 A; x 2 Bg

= pk+` + (1� pk)(1� p`)
n

(7)

where p = 2�1=r . The expected number of disjoint set pairs that violate
(4) is thus

N =

r

k=1

k�1

`=0

T

k

T � k

`
p(k; `) +

r

k=1

T
k

2
p(k; k): (8)

By the choice of p and the fact that k; ` � r, (1 � pk) � pk and
(1 � p`) � p`. Consequently, the right-hand side of (7) is bounded
from above as p(k; `) � minfpnk; pn`g. Hence, the right-hand side of
(8) is bounded from above as

N �
r

k=1

k�1

`=0

T

k

T � k

`
pnk +

r

k=1

T
k

2
pnk: (9)

Now, for T � 2r2 + r � 1

k�1

`=0

T � k

`
�

k�1

`=0

T

`
� k

T

k � 1

=
k2

T � k + 1

T

k
� 1

2

T

k

and

T
k

2
<

T

k

2

2:

Subsequently, (9) is bounded by

N �
r

k=1

T

k

2

pnk: (10)

In (10), the largest term is the one for k = 1 if T � (k+1)p�n=2+ k
for all k, i.e., if

T � 1 + 2p�n=2 = 1 + 2 � 2 : (11)

Then by (10)

N � rT 2pn

and thus N < 1 if

T <
p�n=2p

r
=

2p
r
: (12)

Between (11) and (12), (12) is more restrictive for all n and r. As a
consequence, there exists a disjointly r-superimposed family of size
T = r�1=22 � 1, which implies the lower bound of (5).

V. OPEN PROBLEMS

We conclude by posing the following open problems.

Problem 5.1: It is known that
c1
r2

� Rf(r) � c2 lg r

r2
:

Try to diminish the gap between the two bounds.

Problem 5.2: We show in this correspondence that
c1
r2

� Rg(r) � c2
r
:

Try to diminish the gap between the two bounds.

Problem 5.3: We show in this correspondence that

1

2r
� Rh(r) � 1

2
+ o(1)

lg r

r
:

Try to diminish the gap between the two bounds.

Problem 5.4: Do r-SUT and r-superimposed families differ signif-
icantly, i.e., do the functions Rg(r) and Rf (r) differ in magnitude?

Remark: In the course of submitting this correspondence we
learned that Noga Alon and Vera Asodi showed that Rg(r) = 
(1=r)
which answers Problems 5.2 and 5.4.
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A New Lower Bound for Multiple Hypothesis Testing

Lucien Birgé

Abstract—The purpose of this correspondence is to give a new, easily
tractable, and sharp lower bound for the maximal error in multiple hy-
pothesis testing with an application to nonasymptotic lower bounds for the
minimax risk of estimators.

Index Terms—Fano’s lemma, minimax risk, multiple hypothesis testing.

I. INTRODUCTION

Aclassicalbenchmarkfor thequalityofanestimatorofsomeunknown
parameter � belonging to a set� is theminimax risk which is defined as
follows.Assumewewant to estimate the parameter � belonging to some
metric space (�; d) from one observationXXX with unknown distribution
P�; � 2 � andwe consider a loss function of the formw[d(�; �0)]where
w is nonnegative and nondecreasing. Theminimax riskRM (�) over�
is then given byRM(�) = inf �̂ R(�̂;�)with

R(�̂;�) = sup
�2�

�[w(d(�; �̂(XXX)))]
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where the infimum is over all (possibly randomized) estimators �̂(XXX)
with values in �.

Since it is typically impossible to compute RM(�) exactly, one
merely tries to bound it from below as accurately as possible. For this,
a quite classical way is to introduce a finite subset �0 of � such that
d(�; �0) � � for all pairs � 6= �0 belonging to �0 and use the fact that

RM(�) � RM(�0) � w
�

2
inf
T

sup
�2�

�[T 6= �] (1.1)

where T denotes an arbitrary estimator with values in �0. The proof
is straightforward and can be found, for instance, in Yu [1]. It can
be extended to the case when d is not a genuine distance but satis-
fies some sort of a triangular inequality as in Yang and Barron [2, pp.
1570–1571]. With this approach, given the subset �0 with cardinality
N +1, boundingRM(�) from below reduces to solving the following
problem.
Multiple hypothesis testing problem Given a family

fP0; . . . ; PNg of probability measures on some measurable set
(E; E) and a random variable XXX with an unknown distribution in the
family, find a lower bound for the maximum probability of error

pM = inf
T

sup
0�i�N

i[T 6= i]

where T denotes an arbitrary (possibly randomized) estimator based on
XXX with values in the set of indices f0; . . . ; Ng and i the probability
that gives XXX the distribution Pi.

Equivalently, pM can be viewed as the maximal error for decoding
the output from a noisy channel when Pi is the output distribution cor-
responding to input i.

One way of solving the above problem, that has been extensively
used in the nonparametric statistics literature since its introduction in
the field by Ibragimov and Has’minskii, is to use Fano’s inequality (see
Fano [3]), as stated in Gallager [4, p. 77, Theorem 4.3.1], and Cover
and Thomas [5, p. 39]. One first observes that

pM � pe = inf
T
(N + 1)�1

N

i=0

i[T 6= i]

and then applies Fano’s inequality which provides a lower bound for pe
based on the Kullback–Leibler divergence (KL divergence, for short)
defined by

K(P;Q) =
log(dP=dQ)dP; if P � Q

+1; otherwise.
This leads to the following lower bound for pM which can be found, for
instance, in the book by Ibragimov and Has’minskii [6, p. 25]: pM �
1 � (K + log 2)=(logN) with

K =
1

N + 1

N

i=0

K Pi;
1

N + 1

N

i=0

Pi : (1.2)

Various versions of this inequality have been used in the nonparametric
statistics literature under the name of “Fano’s lemma” or “Fano’s
method” in order to derive lower bounds for the minimax risk. Let us
mention first the seminal works of Ibragimov and Has’minskii [7],
[8] and [6] or Has’minskii [9], then, among many other references,
Birgé [10] and [11], Yang and Barron [2], and Nemirovski [12]. For
a nice presentation of the method and related results, see [1] and the
references therein.

Related bounds, with a different emphasis, can be found in the se-
quential analysis literature. There, the problem is to get lower bounds
for the expected number of tries in a sequential multiple hypothesis
problem with fixed errors ai;j = i[T = j] for j 6= i. This problem
can be viewed as a dual of ours. Its solution has been found by Wald
[13] for binary tests (N = 1) and has been extended to multiple testing
by Simons [14]. These bounds easily translate to the nonsequential

0018-9448/$20.00 © 2005 IEEE


