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Abstract

Industry-standard lossless compression algorithms (such as LZW) are usually implemented

so that they work on bytes as symbols. Experiments indicate that data for which bytes are not

the natural choice of symbols compress poorly using these implementations, while algorithms

working on a bit level perform reasonably on byte-based data in addition to having compu-

tational advantages resulting from operating on a small alphabet. In this paper, we offer an

information-theoretic explanation to these experimental results by assessing the redundancy

(which is approximated by the divergence rate of two source distributions) of a bit-based model

when applied to a byte-based source. More specifically, we study the problem of approximat-

ing a block Markov source with higher order Markov sources, and show that the divergence

rate between a block Markov source and the best-matching higher order Markov model for that

source converges to zero exponentially fast as the memory of the model increases. This result

is applied to obtain bounds on the redundancy of certain symbol-based universal codes when

they are used for byte-aligned sources.

Index Terms: lossless coding, block Markov sources, higher order Markov modeling, binary

codes, byte-aligned sources.
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Lágymányosi út 11, 1111 Budapest, Hungary (email: gya@szit.bme.hu). During part of this work he was also

with the Department of Mathematics and Statistics, Queen’s University. This research was supported in part by the

Natural Sciences and Engineering Research Council (NSERC) of Canada, the NATO Science Fellowship of Canada,

and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.



1 Motivation

The goal of lossless data compression is to represent digital data using as few binary symbols (bits)

as possible with a subsequent error-free reconstruction. In many cases, very little prior information

is available about the data to be compressed and one is compelled to use universal (adaptive) data

compression algorithms. For historical reasons, most digital data are represented as sequences

of bytes (eight-bit blocks), but there is a substantial amount of data for which this byte-aligned

representation is not natural (e.g., genetic code, where proteins are encoded by sequences of 3

bases, which in turn can be of four kinds, thus one protein is described by 6 bits). Yet, the majority

of compression algorithm implementations have the assumption of byte-alignment hard-coded into

them, making them surprisingly inefficient for data not aligned to byte boundaries.

Implementing data-compression algorithms on the bit level has several advantages from a com-

putational point of view. Moreover, experimental data suggests that the penalty for not taking

byte-alignment into account for many byte-aligned sources seems acceptably low [1]. Specifically,

in our experiments a clearly sub-optimal bit-level BWT-based [2] compressor has significantly

outperformed industry standard compressors (gzip and bzip2) on data that were not aligned

to byte boundaries, while being only slightly inferior in compressing byte-aligned sources. For

example, when applied to data in the Calgary Corpus [3], our compressor consistently produced

compressed files that were only around 15% larger than those for bzip, a similar compression

algorithm implemented on bytes.

Motivated by these practical observations, in present paper we evaluate this penalty in an

information-theoretic setting. Specifically, under Markovian assumptions we investigate the ex-

cess of encoding rate resulting when a lossless code that is optimized for a source with atomic

symbols (e.g., bits) is applied to a source with symbols that are blocks of these atomic symbols

(e.g., bytes).

The minimum achievable rate for lossless coding is the entropy rate of the source [4]. The

excess of code rate over the entropy rate is called the redundancy of the code. This is the quantity

that needs to be minimized when designing a lossless code. If the code is optimal for the model

distribution, the relative entropy rate [5] between the model distribution and that of the source

approximates the rate redundancy of the code with respect to the source.

In Section 3 we analyze the divergence rate between a block Markov source and the best fitting

higher order Markov model. The main result here gives an explicit formula for this divergence rate

which implies that higher order Markov models can efficiently model block Markov sources. In

Section 4 we show that the convergence to zero of the divergence rate is in fact exponential in the

order of the memory of the Markov model. Finally, in Section 5 we upper bound the redundancy on

block Markov sources of a large class of codes that are universal for higher-order Markov sources.
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This bound makes it possible to choose the order of the Markov model in a way that optimizes a

complexity-redundancy tradeoff.

2 Preliminaries

For any sequence of random variables {Xn}
∞
n=0 = X0, X1, . . . , Xn, . . . and for any i ≥ j, the

segment (Xi, Xi+1, . . . , Xj) will be denoted by X j
i . We allow j to be infinite; for example, we write

X∞
0 for the entire sequence {Xn}

∞
n=0. A similar convention applies to deterministic sequences

which are usually denoted using lower case letters.

For any pair of discrete random variables Z and V taking values in the finite sets Z and V ,

respectively, let PZ(z) = Pr(Z = z) and PZ|V (z|v) = Pr(Z = z|V = v) for all z ∈ Z and v ∈ V .

If Z = V , the relative entropy (Kullback-Leibler divergence) between Z and V is defined as

D(Z‖V ) = D(PZ‖PV ) =
∑

z∈Z

PZ(z) log
PZ(z)

PV (z)

where log denotes base 2 logarithm. D(PZ‖PV ) is nonnegative and equals zero if and only if

PZ = PV [5]. For sequences of random variables Z∞
0 and V ∞

0 , the divergence rate is defined as

D(Z∞
0 ‖V ∞

0 ) = lim
n→∞

1

n
D(Zn−1

0 ‖V n−1
0 )

provided the limit exists.

The sequence of random variables X∞
0 taking values in the finite alphabet A is called a block-N

Markov source if for every nonnegative integer i and block of symbols x
(i+1)N−1
0 ∈ A(i+1)N ,

P
X

(i+1)N−1
iN

|XiN−1
0

(
x

(i+1)N−1
iN |xiN−1

0

)

= P
X

(i+1)N−1
iN

|XiN−1
(i−1)N

(
x

(i+1)N−1
iN |xiN−1

(i−1)N

)

= PX2N−1
N

|XN−1
0

(x
(i+1)N−1
iN |xiN−1

(i−1)N ).

The sequence of random variables Y ∞
0 taking values in A is called an mth order Markov source

if for every nonnegative integer i and xm+i
0 ∈ Ai+m+1,

PYi+m|Y i+m−1
0

(xi+m | xi+m−1
0 ) = PYm|Y m−1

0
(xi+m | xm−1

i ).

A binary block code of length n for the source alphabet A is given by a function fn : An →

{0, 1}∗, which maps any source vector x ∈ An to the binary string f(x). The length function `n :

An → N associated with fn gives for each x the length of the corresponding binary string, that is,

`n(x) = |fn(x)|. We require fn to be uniquely decodable, that is, for x1, . . . , xj, y1, . . . , yk ∈ An,
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fn(x1)fn(x2) . . . fn(xj) = fn(y1)fn(y2) . . . fn(yk) if and only if j = k and xi = yi, i = 1, . . . , j,

where for two binary strings s1 and s2, s1s2 denotes their concatenation. It is well known [5] that

if fn is uniquely decodable than its length function ` satisfies the Kraft inequality

∑

x∈An

2−`n(x) ≤ 1.

Moreover, for any such code there exists a prefix code with the same length function, and also there

exists another prefix code f ′
n with length function `′n such that `′n(x) ≤ `n(x) for all x ∈ An, and

the equality holds for `′n in the Kraft inequality, that is,
∑

x∈An 2−`′n(x) = 1. Therefore, without

loss of generality, in the rest of the paper we consider only codes for which the Kraft inequality

holds with equality. Therefore, the coding distribution of fn, defined as

Pfn
(x) = 2−`n(x)

for each x ∈ An, is a proper probability distribution.

The redundancy of the code fn with length function `n for the random vector Xn−1
0 is defined

as

Rn = E`n(Xn−1
0 ) − H(Xn−1

0 ) = E
(
`n(Xn−1

0 ) − log PXn−1
0

(Xn−1
0 )

)

the difference of the expected code length E`n(Xn
1 ) and the entropy

H(Xn−1
0 ) = −

∑

x∈An

PXn−1
0

(x) log PXn−1
0

(x).

Note that Rn ≥ 0, and if Y n−1
0 is distributed according to Pfn

, then

Rn = D(Xn−1
0 ‖Y n−1

0 ).

Similarly, for any distribution Pn over An, one can construct a prefix code with length function

`′n(x) = −dlog Pn(x)e. The redundancy of this code can be bounded as

R′
n = E`′n(Xn−1

0 ) − H(Xn−1
0 ) ≤ D(Xn−1

0 ‖Ŷ n−1
0 ) + 1

where Ŷ n−1
0 is distributed according to Pn.

A binary source code for an infinite source X∞
0 taking values in the alphabet A is given by

a sequence of block-n codes fn. Without loss of generality we assume that for each fn equality

holds in the Kraft inequality. If the coding distributions Pfn
are compatible in the sense that there

is an A-valued random process Y ∞
0 such that the distribution of Y n−1

0 is Pfn
for all n, then the

redundancy rate of the code is given as

lim
n→∞

1

n
Rn = lim

n→∞

1

n
D(Xn−1

0 ‖Y n−1
0 ) = D(X∞

0 ‖Y ∞
0 )
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provided the limit exists [5],[6]. If X∞
0 is a block-N stationary block-N Markov source and Y ∞

0 is

a stationary mth order Markov source, then both sources are block stationary block-mN Markov

sources; for such sources the limit always exists [7].

In the sequel we will alternately use the code for either a block-n code fn, or a sequence of

codes {fn}
∞
n=1.

3 Approximation of block Markov sources

In this section we want to find the best mth order Markovian approximation of a block-N station-

ary block-N Markov source X∞
0 in the sense that we look for an mth order Markov source Y ∞

0

achieving the minimum

D̄m
4
= min

{
D̄(X∞

0 ‖Y ∞
0 ) : Y ∞

0 is mth order Markov
}
.

Clearly, without loss of generality we may assume that Y ∞
0 is stationary.

Let {Xn}
∞
n=−∞ be the two-sided block-N stationary extension of {Xn}

∞
n=0, and let {Yn}

∞
n=−∞

be the two-sided stationary extension of {Yn}
∞
n=0. The minimizing {Yn} and the minimum diver-

gence rate will be expressed in terms of the random variables

Uj = Xj−m+τ , j = 0, 1, 2, . . .

where τ is a random variable that is uniformly distributed on {0, 1, . . . , N − 1} and is independent

of {Xn}. Notice that {Uj} can be seen as a stationary version of the (only) block-N stationary

source {Xn}. With this in mind, it is intuitively clear that the best mth order Markovian approxi-

mation of {Un}, which has the same mth order conditional distributions as {Un}, will also be the

best approximation for {Xn}. This statement is formalized in the next theorem.

Theorem 1 Given a block-N Markov source X∞
0 , the relative entropy rate D̄(X∞

0 ‖Y ∞
0 ) is mini-

mized over all stationary mth order Markov sources Y ∞
0 if and only if PYm|Y m−1

0
= PUm|Um−1

0
. The

minimum relative entropy rate is given for all m ≥ 2N by

D̄m = I(τ ; Um|U
m−1
0 )

the conditional mutual information between τ and Um given Um−1
0 . Moreover, there is a stationary

version Ŷ ∞
0 of Y ∞

0 such that P
Ŷ m
0

= PUm
0

.

Expressing conditional mutual information in terms conditional entropies as

I(τ ; Um|U
m−1
0 ) = H(τ |Um−1

0 ) − H(τ |Um
0 )
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we obtain

∞∑

m=2N

I(τ ; Um|U
m−1
0 )

=
∞∑

m=2N

(
H(τ |Xτ−1

τ−m) − H(τ |Xτ
τ−m)

)

≤ H(τ |Xτ−1
τ−2N) − lim inf

m→∞
H(τ |Xτ−m

τ ) ≤ log N

where the first inequality follows since we clearly have H(τ |X τ−1
τ−m−1) = H(τ |Xτ

τ−m).

Thus we obtain the following corollary which states that the block Markov source can be arbi-

trarily closely approximated by higher-order Markov models by increasing the model order.

Corollary 1 The minimum relative entropy rate D̄m satisfies

∞∑

m=2N

D̄m ≤ log N.

In particular

lim
m→∞

D̄m = 0.

Remark The fact that D̄m converges to zero as m → ∞ is not very surprising in view of the fact

that the divergence rate between a stationary process and its best mth oder Markov approximation

asymptotically vanishes as m → ∞ (see, e.g., [7]). Note, however, that X∞
0 is non-stationary,

and that the theorem gives an explicit expression for the optimum approximating process and a

characterization of the resulting minimum divergence rate D̄m. In the next section we will use this

result to determine the rate at which D̄m converges to zero.

Proof of Theorem 1 For all n > m we have from the chain rule for the relative entropy [5]

D(PXn
0
‖PY n

0
)

=
n∑

i=m

D(PXi|X
i−1
0

‖PYi|Y
i−1
0

) + D(PXm−1
0

‖PY m−1
0

)

where

D(PXi|X
i−1
0

‖PYi|Y
i−1
0

) =
∑

ai
0∈A

i+1

PXi
0
(xi

0) log
PXi|X

i−1
0

(ai|a
i−1
0 )

PYi|Y
i−1
0

(ai|a
i−1
0 )

.

Observe that if m ≥ 2N , then for any i ≥ m,

PXi|X
i−1
0

(·|xi−1
0 ) = PXi|X

i−1
i−m

(·|xi−1
i−m)
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and

PYi|Y
i−1
0

(·|yi−1
0 ) = PYm|Y m−1

0
(·|ym−1

0 ).

Therefore

D(PXi|X
i−1
0

‖PYi|Y
i−1
0

) =
∑

a∈Ai

PXi−1
0

(a)D
(
PXi|X

i−1
0

(·|a)‖PYi|Y
i−1
0

(·|a)
)

=
∑

b∈Am

PXi−1
i−m

(b)D
(
PXi|X

i−1
i−m

(·|b)‖PYm|Y m−1
0

(·|b)
)

=
∑

b∈Am

PXt−1
t−m

(b)D
(
PXt|X

t−1
t−m

(·|b)‖PYm|Y m−1
0

(·|b)
)

where t = i mod N . Denoting the last sum by St, we obtain

lim
n→∞

1

n + 1
D(PXn

0
‖PY n

0
) = lim

n→∞

1

n + 1

n∑

i=m

D(PXi|X
i−1
0

‖PYi|Y
i−1
0

) =
1

N

N−1∑

t=0

St.

Let τ denote a uniform random variable over {0, 1, . . . N − 1} that is independent of the pair

({Xn}, {Yn}) pair, and define the random vectors Um
0 = Xτ

τ−m and V m
0 = Y τ

τ−m. Then we can

rewrite the relative entropy rate as

D̄(X∞
0 ‖Y ∞

0 )

=
N−1∑

t=0

Pτ (t)
∑

b∈Am

PUm−1
0 |τ (b | t)

· D
(
PUm|Um−1

0 ,τ (· | b, t) ‖ PVm|V m−1
0 ,τ (· | b, t)

)

=
N−1∑

t=0

Pτ (t)
∑

b∈Am

PUm−1
0 |τ (b | t)

·
∑

x∈A

PUm|Um−1
0 ,τ (x | b, t) log

PUm|Um−1
0 ,τ (x | b, t)

PYm|Y m−1
0

(x | b)

=
N−1∑

t=0

∑

b∈Am

∑

x∈A

PUm
0 ,τ (b, x, t)

· log
Pτ |Um

0
(t | b, x) PUm|Um−1

0
(x | b)

PYm|Y m−1
0

(x | b) Pτ |Um−1
0

(t | b)

=
N−1∑

t=0

∑

b∈Am

∑

x∈A

PUm
0 ,τ (b, x, t) log

Pτ |Um
0

(t | b, x)

Pτ |Um−1
0

(t | b)

+
N−1∑

t=0

∑

b∈Am

∑

x∈A

PUm
0 ,τ (b, x, t) log

PUm|Um−1
0

(x | b)

PYm|Y m−1
0

(x | b)
.
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Observe that only the second term of the last expression depends on the choice of {Yn}. Since

this term is equal to D(PUm|Um−1
0

‖PYm|Y m−1
0

) (so it is nonnegative), it is uniquely minimized by the

choice PYm|Y m−1
0

= PUm|Um−1
0

. With this optimum choice the second term vanishes, so

D̄m =
N−1∑

t=0

∑

b∈Am

∑

x∈A

PUm
0 ,τ (b, x, t) log

Pτ |Um
0

(t | b, x)

Pτ |Um−1
0

(t | b)

=
N−1∑

t=0

∑

b∈Am

∑

x∈A

PUm
0 ,τ (b, x, t) log Pτ |Um

0
(t | b, x)

−
N−1∑

t=0

∑

b∈Am

PUm−1
0 ,τ (b, t) log Pτ |Um−1

0
(t | b)

= H
(
τ | Um−1

0

)
− H (τ | Um

0 ) = I
(
τ ; Um|U

m−1
0

)

which was to be shown.

Finally, as PYm|Y m−1
0

= PUm|Um−1
0

and U∞
0 is stationary, starting the mth order Markov chain

Y ∞
0 from the distribution PUm−1

0
results in a stationary version of Y ∞

0 . This proves the last state-

ment of the theorem. �

From a coding point of view, Theorem 1 states that if a coding procedure is optimal for Y ∞
0

(in the sense that its length functions correspond to the marginal distributions of Y ∞
0 ), then it can

compress X∞
0 with rate not exceeding the source entropy rate H̄(X∞

0 ) = limn→∞ H(Xn−1
0 ) by

more than D̄m. However, in practical situations such codes are not available, as the distribution

of Y ∞
0 is usually not known. Moreover, as the triangle inequality does not hold for divergences,

a code which is almost optimal for Y ∞
0 need not be good at all for X∞

0 . Still, it is reasonable to

expect that codes that are universal for the class of mth order Markov sources (that is, perform

asymptotically optimally for all sources in the class, including Y ∞
0 ) will perform well on X∞

0 .

This will be shown (together with convergence rates) in Section 5.

4 Rate of convergence

In this section we examine the rate of convergence at which the minimum relative entropy rate D̄m

converges to 0 in Corollary 1. In fact, we will show that D̄m vanishes exponentially fast, that is, a

block Markov source can be very well approximated by high order Markov sources.

From Theorem 1 we can see that in order to establish that rate of convergence, it is sufficient

to estimate the conditional entropy H(τ |Um
0 ). Using Fano’s inequality (see, e.g., [5]) we will trace

back our problem to the problem of classification of Markov sources. In this latter problem, given

finitely many Markov sources, one has to decide which one of them has generated an observed se-

quence. In previous works it was shown that, under various conditions, this problem can be solved
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with exponentially decaying error probability as the length of the observed sequence increases,

see, e.g., [8, 9, 10]. However, the conditions in these works are not immediately applicable to

our setup. Therefore, first we revisit some results from Csiszár et al. [11] concerning large devi-

ations of Markov chains. Based on these results, in Lemma 2 we derive an upper bound on the

classification error (using a similar method as in [8]).

Let A be a finite set, and let Λ denote the set of distributions over A2. The second order type

of a sequence un
0 = (u0, . . . , un) ∈ An+1 is the empirical distribution of the pairs (uk, uk+1) over

A2 defined by the relative frequencies

P
(2)
un
0

(v1, v2) =
1

n
|{k ∈ {0, . . . , n − 1} : uk = v1, uk+1 = v2}|, v1, v2 ∈ A.

For any distribution P (u, v) over A2, let P̄ (u) =
∑

v∈A P (u, v) denote the marginal distribution

of the first coordinate, and for P̄ (u) > 0, let P (v|u) = P (u, v)/P̄ (u). For any stochastic matrix

{W (v|u)}u,v∈A (that is, W (v|u) ≥ 0 for all u, v ∈ A, and
∑

v∈A W (v|u) = 1), let

D(P‖W ) =
∑

u,v

P (u, v) log
P (u, v)

P̄ (u)W (v|u)
=

∑

u,v

P (u, v) log
P (v|u)

W (v|u)

denote the relative entropy between the distributions P (u, v) and P̄ (u)W (v|u). For any set of

distributions Π ⊂ Λ let clΠ denote its closure in Λ under point-wise convergence. Finally, let

Λ0 = {P ∈ Λ :
∑

v∈A P (u, v) =
∑

v∈A P (v, u), u ∈ A} denote the distributions in Λ with equal

marginals, and for any stochastic matrix W , let S(W ) = {P ∈ Λ : P (u, v) = 0 if W (v|u) =

0, u, v ∈ A}. The following lemma is proved in [11].

Lemma 1 ([11, Lemma 2a]) Assume that {Xi} is a Markov chain with finite alphabet A and

transition matrix W , and let Π ⊂ S(W ) be arbitrary. Then for every u ∈ A,

lim sup
n→∞

1

n
log Pr(P

(2)
Xn

0
∈ Π|X0 = u) ≤ − min

P∈Λ0∩clΠ
D(P‖W ).

Note that the minimum on the right hand side of the above inequality is attainable, as it is the

minimum of a continuous function over a compact set.

Following the approach of Natarajan [8], this result easily leads to classification of Markov

sources. Assume that the sample X1, X2, . . . , Xn is generated with equal probability by one of

K stationary Markov sources with transition matrices W1, . . . ,WK , respectively. The problem is

to determine which source has generated the sample. The next lemma provides a classification

method for irreducible Markov-chains with exponentially decaying error probability as the sam-

ple size grows. (A Markov-chain with transition matrix W is called irreducible if for every pair

(u, v) ∈ A2 there is a positive integer n such that the element in the (u, v) position of W n is

positive.)
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Lemma 2 Let {Xi,n}
∞
n=0, i = 1, . . . , K, K ≥ 2, be independent Markov sources with irreducible

transition matrices Wi such that Wi 6= Wj for i 6= j. Assume that t is distributed over {1, . . . , K}

such that Pr(t = i) > 0 for all i = 1, . . . , K, and t is independent of the {Xi,n}’s. Finally, assume

that we observe the tth Markov source, that is, let Xn = Xt,n for n = 0, 1, . . .. Define

Ri = {P ∈ Λ : D(P‖Wi) < D(P‖Wj) for all j 6= i},

and let t̂n = i if P
(2)
Xn

0
∈ Ri for some i ∈ {1, . . . , K} and let t̂n be arbitrary otherwise. Then for

any u ∈ A,

lim sup
n→∞

1

n
log Pr(t 6= t̂n|X0 = u) ≤ − min

1≤i≤K
min

P∈Λ0∩R̄i

D(P‖Wi) < 0

where R̄i = Λ \ Ri denotes the complement of Ri.

Proof. It is easy to see that

Pr(t 6= t̂n|X0 = u) =
K∑

i=1

Pr(t = i|X0 = u) Pr(t̂n 6= i|t = i,X0 = u)

=
K∑

i=1

Pr(t = i|X0 = u) Pr(t̂n 6= i|t = i,Xi,0 = u)

≤

K∑

i=1

Pr(t = i|X0 = u) Pr(P
(2)
Xn

i,0
∈ R̄i|Xi,0 = u)

≤ max
i

Pr(P
(2)
Xn

i,0
∈ R̄i|Xi,0 = u)

= max
i

Pr(P
(2)
Xn

i,0
∈ R̄i ∩ S(Wi)|Xi,0 = u).

Here the last equality holds as a sequence Xn
i,0 has zero probability if it contains a transition of

probability zero. Now from Lemma 1 it follows that

lim sup
n→∞

1

n
log Pr(P

(2)
Xn

i,0
∈ R̄i ∩ S(Wi)|Xi,0 = u) ≤ − min

P∈Λ0∩cl(R̄i∩S(Wi))
D(P‖Wi).

Moreover, since D(P‖Wi) = ∞ for any P 6∈ S(Wi), R̄i ∩ S(Wi) is clearly nonempty, and R̄i is

closed, we have

min
P∈Λ0∩cl(R̄i∩S(Wi))

D(P‖Wi) = min
P∈Λ0∩R̄i

D(P‖Wi).

This yields

lim sup
n→∞

1

n
log Pr(t 6= t̂n) ≤ −min

i
min

P∈Λ0∩R̄i

D(P‖Wi).
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Finally, it remains to show that the right hand side in the above equation is nonzero. Assuming

the contrary, we have that for a given i, Pi minimizes D(P‖Wi) in Λ0 ∩ R̄i, and D(Pi‖Wi) = 0.

The latter divergence can be rewritten as

D(Pi‖Wi) =
∑

u:P̄i(u)>0

P̄i(u)
∑

v

Pi(v|u) log
Pi(v|u)

Wi(v|u)
=

∑

u:P̄i(u)>0

P̄i(u)D(Pi(·|u)‖Wi(·|u))

where D(Pi(v|u)‖Wi(v|u)) denotes the divergence between the two conditional distributions for

a given u. Now since D(Pi‖Wi) = 0, we have D(Pi(·|u)‖Wi(·|u)) = 0 and hence Pi(v|u) =

Wi(v|u) for all u with P̄i(u) > 0. Moreover, the irreducibility of Wi implies that if there is a u

with P̄i(u) = 0, then there is a u′ such that P̄i(u
′) > 0 and Pi(u|u

′) > 0. Thus, Pi(u
′, u) > 0. Since

Pi ∈ Λ0, its marginals are equal, and so P̄i(u) =
∑

û Pi(û, u) > 0, a contradiction. Therefore,

P̄i(u) > 0 for all u ∈ A, and so Pi(v|u) = Wi(v|u) for all u, v ∈ A. Moreover, as Pi 6∈ Ri, there

is some j 6= i such that D(Pi‖Wj) ≤ D(Pi‖Wi) = 0. Thus D(Pi‖Wj) = 0 by the non-negativity

of the relative entropy. Then, since Wj is also irreducible, Pi(v|u) = Wj(v|u) for all u, v ∈ A.

Therefore, Wi = Wj , a contradiction. �

Remark. Note that the end of the proof heavily depends on the fact that the Markov chains are

irreducible. Indeed, it is easy to construct reducible Markov chains such that it is impossible to

distinguish between them with vanishing error probability no matter how large the sample size is.

For example, consider the following two transition matrices:

W1 =




.5 .5 0 0

.5 .5 0 0

0 0 .5 .5

0 0 .5 .5


 and W2 =




.5 .5 0 0

.5 .5 0 0

0 0 .1 .9

0 0 .1 .9


 .

Then, if the two chains start from state 3 or 4, then it is possible to distinguish between them;

however, if they start from state 1 or 2, then the resulting distributions are the same.

Now we are ready to show that D̄m decays exponentially.

Theorem 2 For every block stationary block Markov source X∞
0 there is a constant c > 0 de-

pending on the transition matrix of the source such that

lim sup
m→∞

1

m
log D̄m ≤ −c.

Proof. First notice that U∞
0 = {U

2(k+1)N−1
2kN }∞k=0 is a block-2N Markov source for each value of

τ , as U
2(k+1)N−1
2kN always contains a full character of the block-N Markov source {X

(j+1)N−1
jN }∞j=0.

10



This fact will enable us to use tools for classification of Markov chains (namely, Lemma 2) to

examine estimates of τ based on the sequence Um−1
0 , which then can be used to estimate D̄m =

I(τ ; Um|U
m−1
0 ).

For τ = t, t ∈ {0, . . . , N −1} and U 2N−1
0 = w ∈ A2N , let It,w ⊂ A2N denote the (irreducible)

set of states reachable from w by the Markov chain. Moreover, let Qt,w = {qt(v|u)}, u, v ∈ It,w

denote the transition probability matrix corresponding to the states in It,w. That is,

qt(u|v) = PU4N−1
2N

|U2N
0 ,τ (u|v, t) = PX4N+t−m−1

2N+t−m
|X2N+t−m−1

t−m
(v|u).

To simplify further notation, we extend the above definition for any integer t. Note that Qt,w is a

sub-matrix of the transition probability matrix {qt(v|u)}, u, v ∈ A2N describing the behavior of

the Markov chain for all states. Moreover, Qt,w is irreducible for all w, but the index set It,w is

not necessarily the same for different values of t. If It,w 6= It′,w, then the corresponding matrices

Qt,w and Qt′,w are different. However, QkN+t,w = Qt,w for any integer k, t ∈ {0, . . . , N − 1} and

w ∈ A2N , since X∞
−∞ is block-N stationary.

In the proof we will try to estimate which Qt,w is the generator matrix of an observed sequence

Um
0 . Obviously, if the Qt,w are not all different, this is not possible (we cannot distinguish between

two Markov-chains with the same transition matrices). Therefore, for any t let gw(t) denote the

smallest number in {0, . . . , N−1} such that Qt,w = Qgw(t),w, and let N ∗
w be the number of different

transition matrices Qt,w. (It is easy to show that N ∗
w = max0≤t<N gw(t)+1, and Q0,w, . . . , QN∗

w−1,w

are different.)

Moreover, given U 2N−1
0 = w and gw(τ), τ is independent of Um

0 for every m. Therefore,

H(τ |Um
2N , U 2N−1

0 = w)

= H(τ, gw(τ)|Um
2N , U 2N−1

0 = w)

= H(gw(τ)|Um
2N , U 2N−1

0 = w) + H(τ |gw(τ), Um
2N , U 2N−1

0 = w)

= H(gw(τ)|Um
2N , U 2N−1

0 = w) + H(τ |gw(τ)).

By Theorem 1, this implies for all m ≥ 2N

D̄m = I(τ ; Um|U
m−1
0 ) = H(τ |Um−1

0 ) − H(τ |Um
0 )

=
∑

w

PU2N−1
0

(w)
(
H(gw(τ)|Um−1

2N , U 2N−1
0 = w) − H(gw(τ)|Um

2N , U 2N−1
0 = w)

)

≤
∑

w

PU2N−1
0

(w)H(gw(τ)|Um−1
2N , U 2N−1

0 = w)

≤ max
w:P

U
2N−1
0

(w)>0
H(gw(τ)|Um−1

2N , U 2N−1
0 = w).

Therefore,

lim sup
m→∞

1

m
log D̄m ≤ max

w:P
U

2N−1
0

(w)>0
lim sup

m→∞

1

m
log H(gw(τ)|Um−1

2N , U 2N−1
0 = w). (1)
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Next we bound the conditional entropies H(gw(τ)|Um−1
2N , U 2N−1

0 = w). If N ∗
w = 1, then gw(τ) = 0

with probability 1, and so H(gw(τ)|Um−1
2N , U 2N−1

0 = w) = 0 and

lim
m→∞

1

m
log H(gw(τ)|Um−1

2N , U 2N−1
0 = w) ≤ −cw (2)

with cw = ∞. Otherwise, if N ∗
w > 1, let τm,w = τm,w(Um−1

0 ) be an optimal estimate of gw(τ) based

on Um−1
0 , given U 2N−1

0 = w in the sense that Pr(gw(τ) = τm,w) ≥ Pr(gw(τ) = f(Um−1
0 )|U 2N−1

0 =

w) for any function f : Am → {0, . . . , N ∗ − 1}, and let

pm,w = Pr(gw(τ) 6= τm,w|U
2N−1
0 = w)

(note that such an estimate always exist). Then, since τm,w is a function of Um
0 ,

H(gw(τ)|Um−1
2N , U 2N−1

0 = w) ≤ H(gw(τ)|τm,w, U 2N−1
0 = w) (3)

(for properties of the entropy function see, e.g., [5]). Moreover, by Fano’s inequality

H(τ ∗|τm, U 2N−1
0 = w) ≤ log(N ∗

w − 1)pm,w + hb(pm,w)

where hb(p) = −p log p − (1 − p) log(1 − p) for 0 ≤ p ≤ 1. From here, obviously

lim sup
m→∞

1

m
log H(gw(τ)|τm,w, U 2N−1

0 = w)

≤ lim sup
m→∞

1

m
log

(
2 max

{
log(N ∗

w − 1)pm,w, hb(pm,w)
})

≤ max

{
lim sup

m→∞

1

m
log pm,w, lim sup

m→∞

1

m
log hb(pm,w)

}
. (4)

Next we use Lemma 2 to bound (4). In order to be able to apply the lemma, we need to determine

the state space of the observed process, and then we only need to find the generating Markov chain

(given by Qt,w) among those that live on that state space. Since the Markov chains defined by the

matrices Qt,w are irreducible, the probability that a given state is not reached in k steps converges

to 0 exponentially fast in k. Therefore, for the set of values Îk = {U 2N−1
0 , U 4N−1

2N , . . . , U 2kN−1
2(k−1)N},

we have

lim
k→∞

Pr(Îk 6= It,w|τ = t, U 2N−1
0 = w) ≤ −c′w,t

for some c′w,t > 0. This implies that

lim
m→∞

Pr(Îb m
2N

c 6= Igw(τ)|U
2N−1
0 = w) ≤ −cw,1 (5)

where cw,1 = mint c
′
w,t/2N > 0.
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For any I ⊂ A2N , let

Qw(I) = {gw(i) : 0 ≤ i < N, Qi,w is defined on I}

denote the set of indexes of the Markov chains with state space I (for Markov chains with the

same transition matrix, we consider the one with the smallest index). Now gw(τ) can be estimated

by first estimating Igw(τ) by Îk, k = b(m − 1)/2Nc, based on Um
0 , and then estimating gw(τ) by

the optimal classifier for the problem of deciding which Qi,w, i ∈ Qw(Îk) generated the sequence

U2N−1
0 = w,U 4N−1

2N , . . . , U 2kN−1
2(k−1)N . Let p′m,w denote the conditional error probability of the optimal

classifier Îk for Igw(τ) given U 2N−1
0 = w. Then

pm,w ≤ Pr(Îk 6= Igw(τ)|U
2N−1
0 = w) + p′m,w. (6)

Let

Ri = {P ∈ Λ : D(P‖Qi,w) < D(P‖Qj,w) for all i 6= j, i, j ∈ Qw(Igw(τ))}

and define

cw,2 = min
i∈Qw(Igw(τ))

min
P∈Λ0∩R̄i

D(P‖Qi,w).

Then, as the {Qi}, i ∈ Qw(Igw(τ)) are different and irreducible, from Lemma 2 we have cw,2 > 0

and

lim sup
m→∞

1

m
log p′m,w ≤ −cw,2.

Combining this inequality with (5) and (6) we obtain that for the positive number cw = min{cw,1, cw,2}

we have

lim sup
m→∞

1

m
log pm,w ≤ −cw. (7)

In particular, limm→∞ pm,w = 0. Therefore, as L’Hospital’s rule implies

lim
p→0

p log(1/p)/hb(p) = 1

we have

lim sup
m→∞

1

m
log hb(pm,w) = lim sup

m→∞

1

m
log

(
pm,w log

1

pm,w

)

= lim sup
m→∞

1

m
log pm,w

where the second equality holds because (7) implies limm→∞
1
m

log log pm,w = 0. Thus, the two

terms in the maximum in (4) are equal and converge to zero exponentially fast by (7). Combining

this fact with inequalities (1) and (2) proves the theorem. �
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5 Universal symbol-based coding of block Markov sources

Now we are ready to establish an upper bound for the real coding redundancy for a large class of

universal symbol-based codes. Let `
(m)
n : An → {0, 1}∗ denote the code lengths of a universal

code {fn} for mth order Markov sources satisfying

1

n
sup

P
Y

n−1
0

sup
zn−1
0 ∈An

[
`(m)
n (zn−1

0 ) + log PY n−1
0

(zn−1
0 )

]
≤ c(m)

n (8)

for some c
(m)
n → 0 as n → ∞, where the first supremum is taken over all n-fold marginal distri-

butions of mth order Markov sources over A. In other words, we require that the “pointwise re-

dundancy” converges to zero uniformly for each source sequence and for each mth order Markov

source. For example, there exist universal arithmetic codes for mth order Markov sources with

c
(m)
n = O(|A|m+1 log n/n) (see, e.g., [6]).

For fixed m and n the per symbol coding redundancy is defined as

Rn,m =
1

n

(
E`(m)

n (Xn−1
0 ) − H(Xn−1

0 )
)

Theorem 3 If the code length function `
(m)
n satisfies (8) then for n ≥ m ≥ 2N the coding redun-

dancy Rn,m for the block stationary block Markov source X∞
0 can be bounded as

Rn,m ≤
1

n
log N + 2−mcr+o(m) + c(m)

n (9)

where cr is defined in Theorem 2.

Remarks.

(i) For any fixed m and very large coding block length n, the redundancy is exponentially small in

m, that is,

lim sup
n→∞

1

n
E[`(m)

n (Xn−1
0 )] − H̄(X∞

0 ) ≤ 2−mcr+o(m).

(ii) It is easy to see that to minimize the bound (9), m should be chosen O(log n). As mentioned

before, there are arithmetic codes with c
(m)
n = O(|A|m+1 log n/n) [6]. For these codes, the optimal

choice is m = log n/(cr +logA), yielding a redundancy bound of order n− cr
cr+log |A| . Obviously, cr

is not known in advance. Moreover, this rate is slower than applying the universal code to the first

order block Markov source, which results in O(N |A|2N log(n/N)/n) redundancy. The reason for

this is that while the number of parameters of the original source is finite (namely, O(|A|2N)), the

number of parameters of the approximating mth order Markov chain (which is O(|A|m)) grows

without bound as m increases. On the other hand, if the dependence of c
(m)
n on m is less than

exponential, then the dominant term in (9) is usually the last one.
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(iii) The result may be interesting for the practical case of universal compression, when the block

size of the input is not known. Choosing an incorrect block length may result in deteriorated per-

formance, as illustrated by the following experiment. We used two representations of the English-

language text “book1” from the Calgary Corpus [3], one using Ns = 7 bits per character, the other

using Ns = 8 bits per character. The resulting files were compressed with the bzip2 algorithm

operating on (possibly different) fixed-length blocks of Ne symbols (Ne is chosen to be 1,7, and

8).1 Obviously, the plots when Ns = Ne are the same. The per-block entropy rate of the source

does not depend on Ns, equaling approximately 2 bits per block. The graph in Fig. 1 shows the

average number of bits in the encodings per one source block, as the length of the source sequence

(measured in source blocks) increases. It can be seen that the performance for the the binary alpha-

bet size (Ne = 1) is robust and superior to the case where the source and encoder alphabet sizes

are mismatched (i.e, either Ns = 7 and Ne = 8, or Ns = 8 and Ne = 7).

The experiment is repeated with a truly first-order Markov source which was generated from

“book1” using the text’s empirical first-order Markov transition probabilities. Fig. 2 shows the

results which are consistent with that of the first experiment. Here we know that choosing the

smallest encoding block length Ne = 1 results in guaranteed performance by Theorem 3, with the

computational advantage of operating on a small alphabet. Thus, coding on the elementary symbol

level is a practically good suboptimal scheme for encoding block Markov sources with unknown

block size.
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Figure 1: Compression performance of bzip2 on “book1” for different source and encoder block sizes.

1Of course, strictly speaking bzip2 is not a universal compression method, but it serves well for illustrative

purposes.
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Figure 2: Compression performance of bzip2 on the first-order Markov source generated from “book1”

for different source and encoder block sizes.

Proof of Theorem 3: From (8) it follows that for any mth order Markov source Y ∞
0 and xn−1

0

log
PY n−1

0
(xn−1

0 )

P
`
(m)
n

(xn−1
0 )

≤ nc(m)
n (10)

where P
`
(m)
n

denotes the coding distribution for n-long sequences.

Let Ŷ ∞
0 denote the stationary mth order Markov approximation of X∞

0 , defined in Theorem 1,

achieving the minimum in the definition of D̄m (recall that P
Ŷ m−1
0

= PUm−1
0

). Then

D(PXn−1
0

‖P
`
(m)
n

)

= D(PXn−1
0

‖P
Ŷ n−1
0

) +
∑

zn−1
0 ∈An

PXn−1
0

(zn−1
0 ) log

P
Ŷ n−1
0

(zn−1
0 )

P
`
(m)
n

(zn−1
0 )

≤ D(PXn−1
0

‖P
Ŷ n−1
0

) + nc(m)
n

where the inequality holds by (10). Now, the first term can be easily bounded following the proof
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of Theorem 1 as

D(PXn−1
0

‖P
Ŷ n−1
0

) = D(PXm−1
0

‖P
Ŷ m−1
0

) +
n∑

i=m

D(PXi|X
i−1
0

‖PYi|Y
i−1
0

)

≤ D(PXm−1
0

‖P
Ŷ m−1
0

) +

m−1+Ndn−m+1
N e∑

i=m

D(PXi|X
i−1
0

‖PYi|Y
i−1
0

)

= D(PXm−1
0

‖P
Ŷ m−1
0

) +

⌈
n − m + 1

N

⌉ N−1∑

t=0

St

≤ D(PXm−1
0

‖P
Ŷ m−1
0

) + nD̄m

where St is defined as in the proof of Theorem 1 with Y ∞
0 = Ŷ ∞

0 . Furthermore,

D(PXm−1
0

‖P
Ŷ m−1
0

) = D(PXm−1
0

‖PUm−1
0

) ≤ log N

since for any xm−1
0 ∈ Am, PUm−1

0
(xm−1

0 ) ≥ PXm−1
0

(xm−1
0 )/N by definition. Thus, by Theorem 2

Rn,m ≤
1

n
log N + 2−mcr+o(m) + c(m)

n .

�

6 Conclusion

We have demonstrated that block Markov sources can be encoded with exponentially fast van-

ishing redundancy using codes that are optimized for higher-order symbol-level Markov models.

This partially explains the findings of our experiments that a bit-level implementation of a uni-

versal compression algorithm performs reasonably well on byte-aligned data when compared with

byte-level implementations, inviting further studies of bit-level implementations of compression

algorithms, as on the bit level, one can take advantage of the computational benefits of operating

on the smallest possible alphabet.
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